

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 5

Recitation 5

Comparison Sorting

Last time we discussed a lower bound on search in a comparison model. We can use a similar
analysis to lower bound the worst-case running time of any sorting algorithm that only uses com-
parisons. There are n! possible outputs to a sorting algorithm: the n! permutations of the items.
Then the decision tree for any deterministic sorting algorithm that uses only comparisons must
have at least n! leaves, and thus (by the same analysis as the search decision tree) must have height
that is at least Ω(log(n!)) = Ω(n log n) height1, leading to a running time of at least Ω(n log n).

Direct Access Array Sort
Just as with search, if we are not limited to comparison operations, it is possible to beat the
Ω(n log n) bound. If the items to be sorted have unique keys from a bounded positive range
{0, . . . , u − 1} (so n ≤ u), we can sort them simply by using a direct access array. Construct a
direct access array with size u and insert each item x into index x.key. Then simply read through
the direct access array from left to right returning items as they are found. Inserting takes time
Θ(n) time while initializing and scanning the direct access array takes Θ(u) time, so this sorting
algorithm runs in Θ(n + u) time. If u = O(n), then this algorithm is linear! Unfortunately, this
sorting algorithm has two drawbacks: first, it cannot handle duplicate keys, and second, it cannot
handle large key ranges.

1 def direct_access_sort(A):
2 "Sort A assuming items have distinct non-negative keys"
3 u = 1 + max([x.key for x in A]) # O(n) find maximum key
4 D = [None] * u # O(u) direct access array
5 for x in A: # O(n) insert items
6 D[x.key] = x
7 i = 0
8 for key in range(u): # O(u) read out items in order
9 if D[key] is not None:

10 A[i] = D[key]
11 i += 1

1We can prove this directly via Stirling’s approximation, n! ≈
√
2πn(n/e)n , or by observing that n! > (n/2)n/2 .

2 Recitation 5

Counting Sort
To solve the first problem, we simply link a chain to each direct access array index, just like in
hashing. When multiple items have the same key, we store them both in the chain associated with
their key. Later, it will be important that this algorithm be stable: that items with duplicate keys
appear in the same order in the output as the input. Thus, we choose chains that will support
a sequence queue interface to keep items in order, inserting to the end of the queue, and then
returning items back in the order that they were inserted.

1

2

3

4

5

6

7

def counting_sort(A):
"Sort A assuming items have
u = 1 + max([x.key for x in
D = [[] for i in range(u)]
for x in A:

D[x.key].append(x)
i = 0

non-negative keys"
A]) # O(n)

O(u)
O(n)

find maximum key
direct access array of chains
insert into chain at x.key

8

9

for chain
for x

in
in

D:
chain:

O(u) read out items in order

10

11

A[i]
i +=

=
1

x

Counting sort takes O(u) time to initialize the chains of the direct access array, O(n) time to insert
all the elements, and then O(u) time to scan back through the direct access array to return the
items; so the algorithm runs in O(n + u) time. Again, when u = O(n), then counting sort runs in
linear time, but this time allowing duplicate keys.

There’s another implementation of counting sort which just keeps track of how many of each key
map to each index, and then moves each item only once, rather the implementation above which
moves each item into a chain and then back into place. The implementation below computes the
final index location of each item via cumulative sums.

1

2

3

4

5

6

7

8

9

10

11

def counting_sort(A):
"Sort A assuming items have
u = 1 + max([x.key for x in
D = [0] * u
for x in A:

D[x.key] += 1
for k in range(1, u):

D[k] += D[k - 1]
for x in list(reversed(A)):

A[D[x.key] - 1] = x
D[x.key] -= 1

non-negative keys"
A]) # O(n)

O(u)
O(n)

O(u)

O(n)

find maximum key
direct access array
count keys

cumulative sums

move items into place

Now what if we want to sort keys from a larger integer range? Our strategy will be to break up
integer keys into parts, and then sort each part! In order to do that, we will need a sorting strategy
to sort tuples, i.e. multiple parts.

3 Recitation 5

Tuple Sort
Suppose we want to sort tuples, each containing many different keys (e.g. x.k1, x.k2, x.k3, . . .), so
that the sort is lexicographic with respect to some ordering of the keys (e.g. that key k1 is more
important than key k2 is more important than key k3, etc.). Then tuple sort uses a stable sorting
algorithm as a subroutine to repeatedly sort the objects, first according to the least important key,
then the second least important key, all the way up to most important key, thus lexicographically
sorting the objects. Tuple sort is similar to how one might sort on multiple rows of a spreadsheet
by different columns. However, tuple sort will only be correct if the sorting from previous rounds
are maintained in future rounds. In particular, tuple sort requires the subroutine sorting algorithms
be stable.

Radix Sort
Now, to increase the range of integer sets that we can sort in linear time, we break each integer up
into its multiples of powers of n, representing each item key its sequence of digits when represented
in base n. If the integers are non-negative and the largest integer in the set is u, then this base n
number will have dlogn ue digits. We can think of these digit representations as tuples and sort
them with tuple sort by sorting on each digit in order from least significant to most significant digit
using counting sort. This combination of tuple sort and counting sort is called radix sort. If the

clargest integer in the set u ≤ n , then radix sort runs in O(nc) time. Thus, if c is constant, then
radix sort also runs in linear time!

1 def radix_sort(A):
2 "Sort A assuming items have non-negative keys"
3 n = len(A)
4 u = 1 + max([x.key for x in A]) # O(n) find maximum key
5 c = 1 + (u.bit_length() // n.bit_length())
6 class Obj: pass
7 D = [Obj() for a in A]
8 for i in range(n): # O(nc) make digit tuples
9 D[i].digits = []

10 D[i].item = A[i]
11 high = A[i].key
12 for j in range(c): # O(c) make digit tuple
13 high, low = divmod(high, n)
14 D[i].digits.append(low)
15 for i in range(c): # O(nc) sort each digit
16 for j in range(n): # O(n) assign key i to tuples
17 D[j].key = D[j].digits[i]
18 counting_sort(D) # O(n) sort on digit i
19 for i in range(n): # O(n) output to A
20 A[i] = D[i].item

We’ve made a CoffeeScript Counting/Radix sort visualizer which you can find here:
https://codepen.io/mit6006/pen/LgZgrd

https://codepen.io/mit6006/pen/LgZgrd

4 Recitation 5

Exercises

1) Sort the following integers using a base-10 radix sort.

(329, 457, 657, 839, 436, 720, 355) −→ (329, 355, 436, 457, 657, 720, 839)

2) Describe a linear time algorithm to sort n integers from the range [−n2 , . . . , n3].
Solution: Add n2 to each number so integers are all positive, apply Radix sort, and then subtract
n2 from each element of the output.

3) Describe a linear time algorithm to sort a set n of strings, each having k English characters.
Solution: Use tuple sort to repeatedly sort the strings by each character from right to left with
counting sort, using the integers {0, . . . , 25} to represent the English alphabet. There are k rounds
of counting sort, and each round takes Θ(n + 26) = Θ(n) time, thus the algorithm runs in Θ(nk)
time. This running time is linear because the input size is Θ(nk).

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

