We may now construct a table of the characters of the classes of $C_{3\nu}$ contained in each of the representations D_J of R_3 using Eq. 6-15. The resulting character table is shown in Table 6-9. The representations D_J of R_3 may then be decomposed into the irreducible representations of $C_{3\nu}$ for integral values of J using Eq. 6-14 together with the characters from Table 6-8 to give the results of Table 6-10.

TABLE 6-10 Reduction of $R_3 \rightarrow C_{3v}$ for integral J

J	$R_3 ightarrow C_{3v}$	Number of Levels		
0	$^1\Gamma_1$	1		
1	$^1\Gamma_2$ + $^2\Gamma_3$	2		
2	$^{1}\Gamma_{1} + 2^{2}\Gamma_{3}$	3		
3	${}^{1}\Gamma_{1} + 2{}^{1}\Gamma_{2} + 2{}^{2}\Gamma_{3}$	5		
4	$2^{1}\Gamma_{1} + {}^{1}\Gamma_{2} + 3^{2}\Gamma_{3}$	6		
5	${}^{1}\Gamma_{1} + 2{}^{1}\Gamma_{2} + 4{}^{2}\Gamma_{3}$	7		
6	$3^{1}\Gamma_{1} + 2^{1}\Gamma_{2} + 4^{2}\Gamma_{3}$	9		
7	$2^{1}\Gamma_{1} + 3^{1}\Gamma_{2} + 5^{2}\Gamma_{3}$	10		
8	$3^{1}\Gamma_{1} + 2^{1}\Gamma_{2} + 6^{2}\Gamma_{3}$	11		

For half-integer J the characters of the classes of the double group C'_{3v} contained in each of the representations D_J of R_3 are found again using Eq. 6-15. The characters associated with the classes σ_v and $\bar{\sigma}_v$ are all zero, and those associated with the classes \bar{E} and \bar{C}_3 have the same magnitude, but have opposite sign to that of the classes E and E_3 respectively. It is left to the reader to verify that for integer E the representations E0 of E1 of E3 decompose into the irreducible representations of the double group E2 as shown in Table 6-11. In the absence of magnetic fields or

TABLE 6-11 Reduction of $R_3 \rightarrow C'_{3v}$ for half-integral J

J	$R_3\! ightarrow\!C_{3v}'$	Number of Levels
$\frac{1}{2}$	$^2\Gamma_4$	1
3	$({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + {}^{2}\Gamma_{4}$	2
5 2	$({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + 2{}^{2}\Gamma_{4}$	3
12 32 52 72 92	$({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + 3{}^{2}\Gamma_{4}$	4
92	$2({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + 3{}^{2}\Gamma_{4}$	5
$\frac{11}{2}$	$2({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + 4{}^{2}\Gamma_{4}$	6
$\frac{13}{2}$	$2({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + 5{}^{2}\Gamma_{4}$	7
1.5 2	$3({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + 5{}^{2}\Gamma_{4}$	8

exchange interactions, the levels that transform according to the irreducible representations ${}^1\Gamma_5$ and ${}^1\Gamma_6$ will, according to Kramers' degeneracy

heorem, always appear as degenerate pairs. Tables for the reductions f_1 the irreducible representations f_2 of f_3 to the irreducible representations the thirty-two crystallographic point groups have been given by Koster at f_3

Runciman²⁷⁶ has considered the general problem of calculating the number of levels a state of a given J will be split into for each of the hirty-two crystallographic point groups and has shown that the point groups may be classified under four headings as follows:

- 1. Cubic: O_h , O, T_d , T_h , T.
- 2. Hexagonal: D_{6h} , D_{6} , C_{6v} , C_{6h} , C_{6} , D_{3h} , C_{3h} , D_{3d} , D_{3} , C_{3v} , S_{6} , C_{3} .
- 3. Tetragonal: D_{4h} , D_4 , C_{4v} , C_{4h} , C_4 , D_{2d} , S_4 .
- 4. Lower symmetry: D_{2h} , D_2 , C_{2v} , C_{2h} , C_2 , C_3 , C_2 , C_1 .

Then for integral J all the point groups within one of these classes will give rise to the same number of levels as shown in Table 6-12. For

TABLE 6-12 Splittings for integral J

J	0	1	2	3	4	5	6	7	8
Cubic	1	1	2	3	4	4	6	6	7
Hexagonal	1	2	3	5	6	7	9	10	11
Tetragonal Lower	1	2	4	5	7	8	10	11	13
symmetry	1	3	5	7	9	11	13	15	17

half-integral values of J all the groups other than cubic give rise to $J + \frac{1}{2}$ evels as given in Table 6-13. Thus, knowing the symmetry class at the

TABLE 6-13 Splittings for half-integral J

J	$\frac{1}{2}$	$\frac{3}{2}$	5 2	7/2	92	$\frac{1}{2}$	$\frac{13}{2}$	$\frac{1}{2}^{5}$	
Cubic All other	1	1	2	3	3	4	5	5	_
symmetries	1	2	3	4	5	6	7	8	

ite of the rare earth ion in a crystal, we can predict readily the number of evels a state of given J will split into. Alternatively, rare earth ions may be used to probe the symmetry of sites in crystals. An interesting example of use of a rare earth ion as a symmetry probe has been given by Oshima at al., 277 who used the fluorescence of Sm³⁺ to study the phase transition in barium titanate at -80° C.

64 Descending Symmetries

is sometimes useful to regard a crystal field as being made up of comonents of decreasing symmetry.^{278,279} For example, we might consider